playground/scripts/generate-embeddings.js

40 lines
1.5 KiB
JavaScript

// eslint-disable-next-line @typescript-eslint/no-unused-vars
import * as tf from '@tensorflow/tfjs-node';
import use from '@tensorflow-models/universal-sentence-encoder';
import fs from 'fs-extra';
import glob from 'glob';
import path from 'path';
import { marked } from 'marked';
async function extractTextFromMarkdown(filePath) {
const markdown = await fs.readFile(filePath, 'utf8');
return marked(markdown).replace(/<[^>]*>/g, ''); // Strip HTML tags generated by marked
}
async function generateEmbeddingsForDirectory(directoryPath) {
// Get all markdown files in directory
const files = glob.sync(`${directoryPath}/*.md`);
// Extract texts from markdown files
// eslint-disable-next-line @typescript-eslint/no-unused-vars
const poems = await Promise.all(files.map(async (file, _index) => ({
id: path.basename(file, '.md'), // Use filename as ID
text: await extractTextFromMarkdown(file)
})));
// Load the Universal Sentence Encoder model
const model = await use.load();
const embeddings = await Promise.all(poems.map(poem => model.embed([poem.text])));
// Map embeddings back to poem objects
const poemEmbeddings = poems.map((poem, index) => ({
id: poem.id,
vector: embeddings[index].arraySync()[0] // Extract the vector
}));
// Save embeddings to JSON file
fs.writeJson('embeddings.json', poemEmbeddings);
}
generateEmbeddingsForDirectory('src/posts/poetry'); // Update path accordingly