// eslint-disable-next-line @typescript-eslint/no-unused-vars import * as tf from '@tensorflow/tfjs-node'; import use from '@tensorflow-models/universal-sentence-encoder'; import fs from 'fs-extra'; import glob from 'glob'; import path from 'path'; import { marked } from 'marked'; async function extractTextFromMarkdown(filePath) { const markdown = await fs.readFile(filePath, 'utf8'); return marked(markdown).replace(/<[^>]*>/g, ''); // Strip HTML tags generated by marked } async function generateEmbeddingsForDirectory(directoryPath) { // Get all markdown files in directory const files = glob.sync(`${directoryPath}/*.md`); // Extract texts from markdown files // eslint-disable-next-line @typescript-eslint/no-unused-vars const poems = await Promise.all(files.map(async (file, _index) => ({ id: path.basename(file, '.md'), // Use filename as ID text: await extractTextFromMarkdown(file) }))); // Load the Universal Sentence Encoder model const model = await use.load(); const embeddings = await Promise.all(poems.map(poem => model.embed([poem.text]))); // Map embeddings back to poem objects const poemEmbeddings = poems.map((poem, index) => ({ id: poem.id, vector: embeddings[index].arraySync()[0] // Extract the vector })); // Save embeddings to JSON file fs.writeJson('embeddings.json', poemEmbeddings); } generateEmbeddingsForDirectory('src/posts/poetry'); // Update path accordingly